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A group of proteins found at cell-cell junctions have a common structural domain, called
PDZ—a stretch of 80-90 amino acid residues initially identified in the three proteins
PSD-05, Dig, and ZO-1. This domain is found in various proteins from bacteria to mammals
and is involved in protein-protein interaction. Recently, many proteins containing this
domain were identified in the nervous system by molecular cloning and shown to interact
with other synaptic proteins, including various transmitter receptors, ion channels, and
signal transducers. These PDZ-containing proteins are mostly located near the synaptic
membrane and are, therefore, speculated to transport associated proteins to the synapse
and/or anchor them at the synaptic sites. Alternatively, as a single molecule often contains
multiple PDZ domains that can interact with each other, it may cluster all these synaptic
molecules and facilitate their signaling at synaptic sites. This review focuses on the best
characterized PDZ-containing proteins that interact with iV-methyl-D-aspartate (NMDA)-
type glutamate receptors and discusses their functions in synaptic organization.
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receptor clustering.

Neurotransmitter receptors and intracellular signal-trans-
ducers are essential molecular machinery for neurotrans-
mission and synaptic plasticity. Unless properly arranged
both spatially and temporally, however, the postsynaptic
machinery cannot work effectively. At the neuromuscular
synapse, for instance, various signal-transducing molecules
and cytoskeletal proteins are associated with nicotinic
acetylcholine receptors and regulate their spatial compart-
mentalization and cytoskeletal interactions, both of which
are suggested to influence synaptic efficacy (1). Thus, func-
tional impairment of these receptor-associated molecules
results in abnormal neurotransmission to the muscle.
These observations on neuromuscular synapses suggest
that mechanisms controlling subcellular distributions of
such principal players in the synapse may form a basis for
synaptic plasticity. In line with this, recent interest in
neuroscience research has focused on the mechanisms
underlying the subcellular compartmentalization of recep-
tors for glutamate, the most prevalent excitatory neuro-
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transmitter in mammalian brain.
Many proteins that share a common motif, called the

PDZ domain, are located at cell-cell junctions; for neurons,
it is the synaptic junction. The PDZ domain refers to a
stretch of 80-90 amino acid residues that was initially
identified in the three proteins, PSD-95, Dig, and ZO-1 (2-
4). This domain is conserved among various proteins from
bacteria to mammals and mediates protein-protein inter-
actions through its high affinity binding to C-terminal
residues of target proteins (5-7). More than 50 different
proteins in mammals have, so far, been shown to contain
PDZ domain(s) and are classified into the following groups
based on their structural homology; membrane-associated
guanylate kinases (MAGUK) (including p55-like proteins,
tight junction proteins, and Dig-like proteins), syntrophins,
tyrosine phosphatases, dsh homologues, and LEM domain
proteins (6).

Those proteins in the Dig family that interact with
iV-methyl-D-aspartate (NMDA)-type glutamate receptors
are the focus of this review. The NMDA receptor channel is
one of the ionotropic glutamate receptors and is assembled
from the NR1 subunit and any of four NR2 subunits
(NR2A, NR2B, NR2C, and NR2D). Crucial functions in
synaptic development and plasticity have been attributed
to the NMDA receptor (8-10). Recently, one important
study has added further insight into the functions of NR2
subunits in vivo. Mice expressing truncated NR2A, NR2B,
and NR2C molecules, lurking their C-terminus intracel-
lular motif, show similar phenotypes to those carrying total
disruption of the corresponding genes (11). Although the
truncated NR2 receptor subunits retain both ligand-binding
and channel-forming domains, the results, unexpectedly,
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clustering is thought to be a molecular process distinct from
receptor targeting (2). For example, an extracellular mole-
cule, agrin, enhances the association among nicotinic acetyl-
choline receptor complexes and induces the formation of
receptor aggregates that appear as a patch structure widely
distributed on cell surfaces. Hsueh et al. (44) found that the
clustering of K+ channels only requires the N-terminal
PDZ domains and/or the N-terminus of PSD-95/SAP90.
The results proposed that channel clustering may depend
on aggregation of PDZ domains which is achieved by di-
sulfide-linked multimerization of PSD-95/SAP90 through
the two cysteines at its N-terminus. This hypothesis is
controversial, however, as the cysteine residues are now
suggested to be palmitoylated in PSD-95/SAP90 (see
below). Alternatively, these Dig-like PDZ proteins can be
multimerized by intermolecular concatenation of the PDZ
domains. No partner for the SH3 domain of the Dig-like
PDZ proteins has yet been identified, however. The exact
nature of their multimerization, if any, leading to the re-
ceptor clustering, remains to be elucidated.

A variety of PDZ proteins have been shown to interact
with cytoskeletal structures (45-48) and this interaction is
likely to be important for synaptic targeting and/or anchor-
ing of receptors. The targeting of NR2 subunits appears not
to require their tSXV motif: C-terminally truncated NR2
subunits can form glutamate-gated channels that are
activated by synaptic inputs, just as are the wild-type
subunits (11). Nevertheless, the tSXV motif of some NRl
splice variants (49) might contribute to targeting/anchor-
ing the NMD A receptor complex to the synapse. The fact
that the NMD A receptor is capable of being clustered in the
absence of PSD-95/SAP90 and PSD-93/chapsyn-110 in
cultured hippocampal cells (50), however, appears to
negate this possibility. What, then, controls clustering and/
or targeting of the NMDA receptor complex before it is
anchored at the synapse with signal transducing mole-
cule (s)? Some cytoskeleton-associated proteins, such as
tf-actinin-2 (52) and yotiao (52), which can directly inter-
act with NMDA receptor channels but not through their
C-termini, may provide an alternative targeting mecha-
nism. a-Actinin-2, a protein known to cross-link actin
filaments, can also be co-immunoprecipitated from brain
tissue with NRl, NR2B, and PSD-95/SAP90 (51) and is
colocalized with the NMDA receptor at synaptic sites in
cultured hippocampal neurons (50). This suggests that a-
actinin-2 may be responsible for anchoring NMDA receptor
to synapses. In contrast, yotiao, also binds with NRl
through the region called the Cl cassette, which is subject-
ed to alternative splicing and contains a site of phosphoryla-
tion by protein kinase C (PKC) (49). The Cl cassette also
has high-affinity for calmodulin (53, 54). Interestingly,
phosphorylation of the Cl cassette by PKC controls the
subcellular targeting of NE1 subunits in heterologous cells
(55). Since not all the NMDA receptor complexes, how-
ever, include the NRl subunit containing the Cl cassette,
the splicing pattern of this region in NRl mRNA may
influence subcellular localization of the NMDA receptor
channels.

Assembly of signal transducing units with NMDA re-
ceptors

In mice carrying the C-terminally truncated NR2 sub-
units the NMDA synaptic current is normal. However,

these truncated subunits fail to participate in some physio-
logical events such as long-term potentiation (LTP) (11),
suggesting ablated signal transduction relays. These results
indicate that the Dig-like PDZ protein(s) associated with
C-termini of NR2 subunits may be responsible for assem-
bling a signal transducing module in close vicinity to the
receptor channel allowing rapid response following channel
activation and cation influx. This assembly seems to be
essential for NMDA receptor function because mice ex-
pressing C-terminally truncated NR2 subunits show a
phenotype similar to those whose NR2 genes are fully
disrupted (11, 56-58). What is, then, the signaling path-
way downstream from the Dig-like PDZ protein(s) that is
perturbed in the mutant mice carrying the C-terminaDy
truncated NR2 subunits? It is possible that the G-protein-
coupled cascade and/or Ras-related signals comprise the
downstream pathway from the synapse, as both have been
suggested to interact with PDZ proteins (36, 59). SynGAP
is a PDZ-interacting molecule that is highly homologous to
RasGAP and, indeed, can activate Ras/GTPase (36, 60). In
contrast to RasGAP, SynGAP is expressed only in the
nervous system and is enriched at postsynaptic sites. These
circumstantial pieces of evidence suggest that SynGAP
might transduce signals from other PSD-95/SAP90-asso-
ciated molecules, such as the NMDA-receptors and neuro-
ligins, within the context of a PDZ domain-dependent
signaling complex.

One of the other candidates for the downstream signaling
is nNOS, which synthesizes nitric oxide (NO). nNOS is a
calmodulin- regulated enzyme and NO formation is linked
to NMDA receptor activity (62). nNOS contains a PDZ
domain, through which it interacts with PSD-95/SAP90
and PSD-93/chapsyn-llO (19, 32). Moreover, the subcel-
lular distribution of nNOS is altered if its PDZ domain is
deleted (32). Thus, these PDZ proteins are likely to con-
tribute to functional coupling between NMDA receptors
and nNOS. It is not known, however, whether the PDZ
domain of nNOS competes with NR2 for binding to the
PDZ2 domain of PSD-95/SAP90. Mutant mice expressing
C-terminally truncated NR2 subunits show more severe
abnormalities than those carrying a disrupted nNOS gene
(62). This observation supports the fact that the Dig-like
PDZ proteins attached to NMDA receptor channels must
interact not only with nNOS but also with some other
signal-transducing molecules. Recently, Jaffrey et al. (63)
discovered a new molecule, CAPON (carboxyl terminal
PDZ ligand of nNOS), by yeast two-hybrid screening.
CAPON interacts with the sole PDZ domain of nNOS and
can prevent PSD-95/SAP90 from binding to nNOS. It
would be interesting to know whether the association of
PSD-95/SAP90 or CAPON influences the activity of
nNOS.

Palmitoylation of PDZ proteins
Palmitoylation refers to the post-translational covalent

attachment of long-chain fatty acids, mostly palmitic acid,
to the side chain of cysteine residues in proteins. It often
involves the N-terminal cysteines, but internal cysteines
can also be palmitoylated. It is unique among the lipid
modifications of proteins (acylation), in that it is a revers-
ible, dynamic and regulatable process (64). In recent years,
many signal-transducing proteins such as G proteins and
Src-like tyrosine kinases have been found to be palmi-
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toylated and this has been shown to be essential for their
association with the cell membrane in close proximity to
receptors and ion channels (65). A recent report has
indicated that PSD-95/SAP90 is a major palmitoylated
protein at the postsynaptic membrane, and that the pal-
mitoylated PSD-95/SAP90 is isolated from cell membrane
fractions (66). Mutating the cysteines at position + 3 and/
or +5 of PSD-95/SAP90 inhibits its association with the
cell membrane and results in a lack of interaction with K+

channels {66). This work also demonstrated that the
association of PSD-95/SAP90 with K+ channels in vivo
requires membrane targeting of PSD-95/SAP90 by pal-
mitoylation. Palmitoylation thus seems to be responsible
for increasing the local concentration of PSD-95/SAP90 at
the postsynaptic membrane in the vicinity of ion channels
and for modifying the accessibility of PSD-95/SAP90 to
signaling molecules, ion channels or receptors. In fact,
attaching a transmembrane domain to the N-terminal side
of a mutated PSD-95/SAP90 (lacking two cysteine resi-
dues in its N-terminal region) can functionally substitute
for palmitoylation and facilitate interaction with ion chan-
nels in vivo (66). Interestingly, SAP97 also associates with
K+ channels, even though SAP97 lacks N-terminal cys-
teines (67). However, their complexes are located in
different subcellular region from those of PSD-95/SAP90:
The K+ channels bound to SAP97 are intracellular, while
those associated with PSD-95/SAP90 are close to the cell
membrane (67). From these results, it seems plausible that
palmitoylation of PSD-95/SAP90 might be responsible not
only for PSD-95's own targeting to specific subdomains in
the cell membrane but also for the targeting of molecules
associated with PSD-95/SAP90.

PSD-93/chapsyn-llO (19, 20), SAP102 (28), SAPAP1/
GKAP, SAPAP2 and 3 (37, 38) as well as CRIPT (34), are
among the PSD proteins having potential palmitoylation
sites. PSD-93/chapsyn-110 has various isoforms that are
produced by alternative splicing at its N-terminus (29).
One of the isoforms has cysteines at positions 3 and 5 while
the other's cysteines are at positions 5 and 7. SAP API/
GKAP also exhibits such splicing variations at its N-ter-
minus, and their pattern of alternative splicing is regulated
during the development of the brain (38). Interestingly, the
shorter variants lack potential palmitoylation sites, and the
expression of their mRNAs increases with brain develop-
ment in contrast to that of the longer variant, which
decreases (68). It would be interesting, therefore, to clarify
whether the above-mentioned proteins are subject to
palmitoylation, whether palmitoylation is a regulatory step
for their association with the synaptic membrane, and if
this would affect the functional status of the synapse
through differential targeting of various ion channel and
receptor subunits to the synapse.

The reaction of palmitoylation is bi-directionally regulat-
ed by various agents and enzymes. In the case of hetero-
trimeric G-proteins, G-protein-coupled receptor activation
with an agonist increases palmitate turnover, leading to an
increase in the translocation of the Ga subunit from the cell
membrane to the cytoplasm (69). NO is known to inhibit
palmitoylation of G-proteins and GAP-43 in neurons (70).
Thus, the complex of PSD-95-nNOS-NMDA receptor
might couple calcium ion influx to NO production so to
regulate the palmitoylation state of PSD-95/SAP90: PSD-
95/S AP90 and/or other similarly palmitoylated proteins of

Synaptic
Contact

Retrograde
Signal

Fig. 3. Putative functions of Dig-like PDZ proteins: multiple
interactions and their significance.

the postsynaptic membrane is exposed to high levels of NO
following activation of nNOS that is caused by an increased
cation influx through the NMDA receptor. Therefore,
depalmitoylation and/or inhibition of palmitoylation might
help dissociate the protein in question from the membrane
and modify its interaction with other partner molecules at
the PSD.

Future directions
As mentioned above, it is surprising that a single PDZ

protein can bind to many synaptic partner molecules and,
conversely, that a single partner might interact with
multiple PDZ proteins. How can we explain the redundancy
of interactions of the Dig-like PDZ proteins with their
partner molecules? Given the variety of partner molecules
and their various functions, these PSD proteins may form
the basis for a variety of synaptic functions (Fig. 3). PDZ
proteins might simply provide a docking platform for the
synaptic machinery and facilitate their mutual interactions
between signaling molecules at the synapse. Even if this is
the case, individual synapses of single neurons can be
functionally distinguished by having different PDZ proteins
that carry a specific set of channels, receptors and adhesion
molecules. The synaptic specificity marked with distinct
PDZ proteins may contribute to the formation of Hebbian-
type synapses that are activated selectively by different
types of neuronal activities. Future studies promise to
provide insight into how PDZ proteins are involved in
synaptic development and synaptic plasticity, such as LTP.

We thank Dr. C. Aoki, Dr. K. Sakimura, Dr. R. Holland, and Dr. H.
Xiong for com- ments to this review.
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